
A CAM-based keyword match processor architecture

Long Bu, John A. Chandy *

Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Road, U-2157, Storrs, CT 06269-2157 USA

Received 10 January 2005; received in revised form 17 October 2005; accepted 25 October 2005

Available online 12 December 2005

Abstract

This paper demonstrates a keyword match processor capable of performing fast dictionary search with approximate match capability. Using a

content addressable memory with processor element cells, the processor can process arbitrary sized keywords and match input text streams in a

single clock cycle. We present an architecture that allows priority detection of multiple keyword matches on single input strings. The processor is

capable of determining approximate match and providing distance information as well. A 64-word design has been developed using 19,000

transistors and it could be expanded to larger sizes easily. Using a modest 0.5 mm process, we are achieving cycle times of 10 ns and the design

will scale to smaller feature sizes.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: VLSI design; Keyword match; Cellular automata
1. Introduction

Searching data for specific keywords or signatures is an

important operation in a wide variety of applications including

full-text-search, database queries, search engines, and natural

language processing. Network protocol operations such as IP

routing table lookups, authentication directory lookups, and

intrusion detection also require the ability to match input keys

on some form of data dictionary. Because of the importance of

string matching, there has been a long history of research into

efficient software algorithms to improve search times [1–6].

However, in applications that require very fast search times,

software approaches may not be adequate, and in such cases,

application specific hardware implementations have been

introduced. In the context of keyword matching, there has

been early work in hardware acceleration particularly for

database operations and AI natural language processing [7].

More recently, there has been significant work in the use of

FPGAs for pattern matching for network intrusion detection

[8–12]. For the most part, these FPGA-based designs must be

reconfigured every time the dictionary changes. This is a

significant detriment in applications where the dictionary is
0026-2692/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.mejo.2005.10.015

* Corresponding author.

E-mail addresses: long.bu@uconn.edu (L. Bu), long.bu@uconn.edu (J.A.

Chandy).
dynamic. Moreover, in non FPGA designs such as with ASICs,

reconfiguration is not an option.

Thus, the use of content-addressable memories (CAM) are

particularly attractive for search since they allow the data

dictionary to be changed dynamically. Thus, many pattern

matching hardware implementations have included the use of

content addressable memories (CAM) [13–16]. CAMs allow

keyword matches to be done in a single cycle making search a

constant time operation rather than a linear (or worse) time

operation when done with RAM based software algorithms.

With data streaming operations, the CAMs can thus be used to

perform search in linear time relative to the length of the input

stream rather than the size of the dictionary. The obvious

benefits of CAMs have led to their use in a wide variety of

networking applications including routing lookups, packet

classification and address translation [13].

One of the drawbacks of CAMs, however, is its reliance on

fixed size keys. When searching for matches, the input keys

must all be the same size. For applications like routing table

lookups, where the IP addresses are all the same size, this

limitation is not critical. However, for other applications such

as directory lookups or signature matching for intrusion

detection, the key sizes vary and thus the fixed key size

restriction for CAMs can prove to be problematic.

The use of content addressable memories for text search has

centered around two strategies: cellular automata [14,17,18] and

finite state machines [16,19]. The cellular automata methods

cascade CAMs temporally and then use pointers to propagate

matches from one CAM set to another [20].Motomura et al. have
Microelectronics Journal 37 (2006) 828–836
www.elsevier.com/locate/mejo

http://www.elsevier.com/locate/mejo

Table 1

Keyword match distance given an input string TZ‘blue whale’

Keyword Distance

Whales 1 Deletion of ‘S’

Shale 1 Substitution of ‘S’ with ‘W’

CUE 2 Substitution of ‘C’ with ‘B’

Insertion of ‘L’

Blue 0 Exact match

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836 829
described an cellular automata based architecture to do dictionary

search in VLSI [18]. The keywords are grouped in four character

segments and they allow for concatenating groups to create larger

keywords. However, the grouping by four means that keywords

that are not multiples of the group size will result in wasted CAM

storage space. Hirata, et al. have designed a FSM-based CAM

search architecture that also accommodate variable length

keywords by grouping keywords into segments.

This paper presents a cellular automata based design that is

more space efficient and can easily handle arbitrarily sized

keywords. The design is based on temporally cascaded CAMs

and is an extension of Motomura’s cellular automata structure.

AswithMotomura’s design, processor element cells, external to

the CAM array, will process character match signals from
Control
Circuit

RESET

MAA

END

END

END_IN

START

RESUME

RESET

Ma

Fig. 1. Keyword match pr
the CAM and output keyword match signals. The architecture is

flexible enough to allow for ‘approximate word’ matches as

well. We present the architecture in the following section and

then discuss the implementation and performance results in

subsequent sections.
2. Keyword match processor architecture

To begin the discussion of the architecture, a definition of

the keyword match problem is warranted. Assume a string, T,

with jTj characters and a set, K, of keywords of arbitrary

lengths. Each character has m bits. The goal is to determine if T

matches any keyword k2K. T is said to exactly match a

keyword, k, if jkj is equal to jTj and TiZki for all i%jTj. T can

approximately match a keyword, k, if the distance, d (T, k), is

less than some criterion. The distance is the sum of insertions,

substitutions, and deletions occurring between T and k. A

distance of 0 indicates an exact match. Examples of match

distance are shown in Table 1.

Given this problem definition, a hardware implementation

of the problem was designed using a keyword match processor.

An architectural overview of the keyword match processor is

shown in Fig. 1. The processor is composed of six major
DATA IN

MATCH
SIGNAL

DISTANCE
OUTPUT

MATCHED
ADDRESS
OUTPUT

LEFTMOST
POINTER

WORD
MATCH

CAM

PE Array

Distance Decoder

Match Position Finder

tched Address Output Logic

m

n

n

n

n + n log D
MATCH
POSITION

log n + log D

n log D

ocessor architecture.

character 0 character 1 character 2

bit 0

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836830
components: the control circuit, the CAM, the PE array, the

distance decoder, the match position finder, and the matched

address output logic. These components are described in

further detail below.

CAM Cell

in
pu

t m
-b

it
ch

ar
ac

te
r

CAM Cell CAM Cell

CAM Cell CAM Cell CAM Cell

bit 1

bit m
2.1. Control circuit

The Control Circuit is a simple state machine that manages

the data flow of the input stream and resultant outputs. A

START input signal resets the CAM and PE arrays and readies

the system to start accepting an input data stream. The resume

output signal is asserted when the match processor has finished

processing the input data and is ready for new data word to be

matched.
CAM Cell CAM Cell CAM Cell

match 0 match 1

Fig. 3. CAM array.
2.2. CAM array

Details of the CAM and PE array layout are shown in Fig. 2.

The CAM stores the keywords as m-bit characters in an m by n

array of CAM cells where n is equal to the number of

characters in the CAM, i.e. the sum of the lengths of all

keyword in K. For keywords comprised of ASCII characters, as

would be the case for text search, the character size, m, would

be set to seven. For more general byte-based keywords, m is

equal to 8. Since the CAM is a sequence of variable length

keywords, we need some way to separate the keywords. To do

so, we insert between keywords a delimiter appropriate to the

application—such as ‘space’ or 0xFF for text search. Certain

applications may not have any appropriate delimiters such as

when all possible characters are valid. We will discuss

mechanisms to address this case later.

The detail of the CAM array is shown in Fig. 3. Each

column in the CAM array corresponds to a character in a

keyword. Each cell is a normal CAM cell with a traditional

6-transistor RAM cell with an additional three transistors for

circuitry to indicate a match between the stored bit and the

incoming bit. If there is a match, the output match line is pulled

low. The column match line is shared as a wired-NOR line

between all the cells in the column. Thus, when an input m-bit

character is applied to a column, the column match signal is

active high when all m bits match. The input character is

applied simultaneously to all n columns in the array.
. . .

. . .

. . .

. . .

n characters

m
-b

it
ch

ar
ac

te
r

CAM
Array

PE
Array

. . .

Fig. 2. CAM and PE array layout.
2.3. PE array

The CAM array described so far is similar to what would be

seen in any traditional CAM design. The uniqueness of the

keyword match processor is in the processor element (PE)

array where each PE is a finite state machine that carries out the

approximate match algorithm described later. The PE array is

similar in concept to the cellular automaton processor arrays

proposed by Motomura et al. [14,18]. The original Motomura

design processed 4 match signals from the CAM array in

a 5!3 PE array. Thus, a n-column CAM array requires a

5n/4!3 PE array. This grouping by four necessitates that

words must start on a four-byte boundary, leading to a wastage

of space. Moreover, it also introduces an extra fifth column into

the array. We have modified the design so that the entire PE

array is comprised of just n columns and DC1 rows of

processing elements (PE) where D is the maximum distance

that can be calculated. This simplification of the PE array

removes the extra ‘fifth’ column present in the Motomura

design, and with modifications to the algorithm as described

below, we are also able to remove the restriction that words

begin on a four-byte boundary. The maximum distance, D, that

can be calculated is equal to one less than the number of rows

in the PE array. With a three row array, as implemented, the

maximum distance that can be calculated is two.

Let us now describe the keyword algorithm carried out by

the PE array. Each PE holds a binary value called a flag, which

is used in calculating match distance. We label the PE flags,

PE(i, j), and the incoming match signals from the CAM array

are labeledM(i), where i is the character number and j is the PE

array row number. At the first clock cycle of the keyword

match process, we reset both the CAM and PE arrays. The

CAM array reset causes a delimiter to be presented to the CAM

which activates match signals at every position i where there

is a delimiter, i.e. the end of each keyword in the CAM.

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836 831
When the PE array is reset, PE(i, 0) is set to 1 whenM(iK1)Z1

or iZ0 and all other PE(i, j) are set to 0.

On each subsequent clock cycle, a character from the input

sequence T is presented to the CAM array and is simul-

taneously compared against all the characters in all the

keywords in K. Any character matches are passed to the PE

array for match distance processing. The PE array calculates

distance by transferring flags from one PE to the next using a

set of rules as described below. These rules are similar to the

rules derived by Motomura et al. The subscript t indicates the

current clock cycle and tC1 is the next clock cycle.

PE flag processing rules

(1) If there is a match signal at column i and a flag exists at

PE(i, j), the flag is passed to PE(iC1, j) at the next clock

cycle to represent the situation that it is an exact character

match. The flag remains on row j to indicate no change in

the distance when there is an exact character match. The

flag is also passed to PE(i, jC1) to cover the possibility of

an insertion character that also matches.

if Mt(j)Z1 and PEt(i, j)Z1 then

PEtC1ðiC1; jÞZ 1

PEtC1ði; jC1ÞZ 1

(2) If there is a mismatch signal at column i and a flag exists at

PE(i, j), the flag is passed to PE(iC1, jC1) at the next

clock cycle to represent the substitution case. The flag is

also passed to PE(i, jC1) to cover the possibility of an

insertion character that does not match.

if Mt(i)s1 and PEt(i, j)Z1 then

PEtC1ðiC1; jC1ÞZ 1

PEtC1ði; jC1ÞZ 1
RESET

PE_UL

PE_L

PE_U

Mj-1

Fig. 4. Keyword match p
(3) Whenever there is a flag at PE(i, j), flags are set for the

same clock cycle at PE(iC1, jC1), PE(iC2, jC2). until

the boundary of the PE Array. This rule is to handle the

deletion case. if PEt(i, j)Z1 then

for ð1Rd%DKjÞ

PEtðiCd; jCdÞZ 1

To implement these rules, each PE(i, j) is designed to look to

the up, upper left, and left for flag signals (PE(i, jK1), PE(iK1,

jK1), PE(iK1, j)). For PE(i, j), the match signal to its left

(M(iK1)) is used to determine how to propagate the flags. The

algorithm can be expressed with the following logic equation

for each PE to determine its next state (See Fig. 4 for the logic

schematic. PE_U, PE_UL, and PE_L correspond to the up,

upper left, and left flags, respectively).

PEtC1ði; jÞZ PEtði; jK1ÞCPEtðiK1; jÞMðjK1Þ

CPEtðiK1; jK1ÞMðjK1ÞCPEtC1ðiK1; jK1Þ

(1)
2.4. Distance decoder

The last character of T should be the delimiter. When this

delimiter is presented to the CAM, M(i) will be set at all

locations of the CAM where there is a delimiter and an

END_IN signal is asserted which lets the control circuit know

that the input stream has finished. This also causes an END

signal to be sent to the Distance Decoder and Match Position

Finder. If there is a flag present in a delimiter column in the PE

array, we know there is a match. The row position of the flag

indicates the distance of the match. The Distance decoder

interprets the row information and match signals to output a

word match signal and the distance encoding. It is enabled only

when it receives the END signal from the Control Circuit. The

distance decoder logic to determine a word match is as follows:

WM(i)ZEND$M(i)$(PE(i, 0)CPE(i, 1)C.CPE(i, D))
C
LK

PE_OUTRegister

rocessor PE design.

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836832
2.5. Match position finder

The distance decoder can only determine a word match at

the end of the keyword, but in order to be useful to any

application, the keyword match processor must generate the

start of the keyword rather than the end. It is the match position

finder (MPF) that accomplishes by taking the word match

signal at the end of the keyword and generating a signal

corresponding to the start of the keyword. The MPF finds the

start by propagating the word match signal to the left until it

reaches a match signal from the PE array, in other words, the

previous word end. It can then output a match position (MP)

signal corresponding to the start of the matched keyword. The

distance information for this match is passed along with this

matched position.
2.6. Matched address output (MAO) logic

The output of the MPF is an array of n registered MP bits. A

non-zero entry is an indication that there was a keyword match

at that location. This needs to be encoded into a binary address

for match processing by an external CPU. Moreover, since

there may be multiple matches, these matched addresses must

be separated out. The MAO Logic uses a binary tree priority

encoder structure to generate the matched address available

(MAA) signal which tells the control circuitry that there are

matches and to hold off accepting the next input stream. Then,

a leftmost pointer (LP) signal propagates back up the tree to

determine which is the left most MP signal. At each level of the

tree, a bit of the address is generated from the LP signals at that

level. The associated distance encoding is output along with

the encoded address. When the LP signal reaches the top of the

tree, it is sent to the MPF logic where it resets the register of

the MP signal that was just encoded. On the next clock cycle,

the MAO can then encode the next left-most MP entry. Fig. 5

shows the structure of the four bit tree along with the logic for

each block in the tree.
MAA

M
P

0
LP

0

M
P

1
LP

1

M
P

2
LP

2

M
P

3
LP

3

A1

A0

Fig. 5. MAO logic binary t
The MPF in addition with the MAO is one of the unique

features of the keyword match processor. No previous CAM-

based design has described how to encode multiple matches in

an efficient manner. The tree-based structure of the MAO

makes it very efficient to generate addresses that correspond to

keyword matches.
2.7. Keyword match processor example

Fig. 6 shows an example of the keyword match processor in

operation. There are two keywords in the CAM: UCONN and

HUSKIES. On the first clock cycle, PE(0, 0) and PE(6, 0) are

set because they represent the start of the two keywords.

PE(1, 1), PE(2, 2), PE(7, 1), and PE(8, 2) are also set because of

rule three described above. With an input string of CONE, on

the first clock cycle, the character C is presented to the CAM. A

match on column 1 propagates the flag at PE(1, 1) to PE(1, 2)

and PE(2, 1) per rule 1 and then on to PE(3, 2) per rule three.

The gray circles indicate the position of the flag in the

subsequent cycle. As characters O, N, and E are applied to the

CAM, the flags propagate down and across the PE array. When

the input string is complete, the delimiter is applied again to

identify the keyword end columns and the flags are processed

to determine a match. In the example, there is a flag in column

five, row two. Since column five is a delimiter column, we

declare a match. Because the flag is in row tow, the distance is

two as expected (CONE has a deletion, U, and a substitution,

E for N).

Since a new input character is presented every clock cycle,

the keyword match processor can evaluate an entire input string

in linear time relative to the size of the input stream. The

processing time is constant relative to the number of keywords.

To be exact, the search process takes exactly pCqC2 cycles

where p is the length of the input stream and q is the number of

matches. The two extra cycles are required to initialize the PE

array and to process the distance flags from the delimiter

column.
M
P

0

LP
0

M
P

1

LP
1

LP
in

M
A

A
ou

t

ree (four bit example).

U C O N N H U S K I CAM
Array

0 1 2 3 4 6 7 8 9 10

PE
Array

Cycle 1

E

11

S

12

U C O N N H U S K I CAM
Array

0 1 2 3 4 6 7 8 9 10

PE
Array

Cycle 2

C

Match
Signals

0 1 0 0 0 0 O 0 0 0

E

11

0

S

11

0

U C O N N H U S K I CAM
Array

0 1 2 3 4 6 7 8 9 10

PE
Array

Cycle 3

O

Match
Signals

0 0 1 0 0 0 0 0 0 0

E

11

0

S

11

0

U C O N N H U S K I CAM
Array

0 1 2 3 4 6 7 8 9 10

PE
Array

Cycle 4

N
Match
Signals

0 0 0 1 1 0 0 0 0 0

E

11

0

S

11

0

U C O N N H U S K I CAM
Array

0 1 2 3 4 6 7 8 9 10

PE
Array

Cycle 5

E

Match
Signals

0 0 0 0 0 0 0 0 0 0

E

11

1

S

11

0

5

0

5

5

0

5

0

5

0

Match
Signals

0 0 0 0 0 0 O 0 0 0 0 01

U C O N N H U S K I CAM
Array

0 1 2 3 4 6 7 8 9 10

PE
Array

Cycle 6

Delimiter

Match
Signals

0 0 0 0 0 0 0 0 0 0

E

11

1

S

11

0

5

1

Match (Distance 2)

Fig. 6. Keyword match processor example.

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836 833

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836834
2.8. Architecture extensions
2.8.1. Keyword match processor with no delimiters

As discussed above, there may be cases where the input data

stream may not have any obvious delimiters. In such a case, we

introduce a row of n registers parallel to the CAM array. The

register stores a ‘1’ if it is in the column of the last character of

a keyword, otherwise it stores a ‘0’. These registers can be

initialized when the CAM is initialized. PE array initialization

can thus use the register values to determine keyword ends

rather than the match signal from a delimiter column. The same

is true during distance match calculation. During flag

propagation, we must be careful not to propagate flags past

the keyword end into the next keyword.

2.8.2. Subsequence keyword match. The architecture as

presented can only compare the entire input stream against

the keyword set. However, there may be applications when the

input stream is much longer than any keyword, and thus the

goal is to search for matches against subsequences of the input

stream. The restatement of the keyword match problem is then

to determine if any subsequence in T matches any keyword

k2K. Thus, T is said to exactly match a keyword, k, if there

exists some subsequence Te.eCjkjK1 where TeCiZki for all

i%jkj where jkj is the number of characters in k. And likewise,

T approximately matches a keyword, k, if there exists a

s-character subsequence Te.eCsK1 such that the distance,

d(Te.eCsK1, k), is less than some criterion. The algorithm to

handle this new problem is similar to before except now we can

potentially have keywords starting at any point of the input

stream. This change simply requires that we introduce a flag at

the beginning of each keyword on every clock cycle, not just

the first clock cycle.

The modification of the rules are shown in Fig. 7. E(i) is the

register value for end of keyword.
Fig. 7. Keyword match processor rules with support for no delimiters and

subsequence matching.
3. Keyword match processor VLSI implementation

The match processor was designed using the AMIS 0.5 mm
3-metal layer process. The layout was completed manually

without using any standard cell libraries. A 64 character

keyword match processor was implemented on a 4.5 mm

square die using roughly 23,000 transistors not including the

CAM array. The PE array uses 7680 transistors (three rows

with 64 PEs per row and 40 transistors per PE), the distance

decoder uses 2432 transistors, and the match position finder

uses 7296 transistors. The remainder of the transistors are in the

MAO logic and control circuit. The design consumes about 270

transistors per character. Thus, a 32 K character keyword

match processor would use roughly 8.8 million transistors.

Using Cadence analog environment, we measured delays

for various components (see Table 2) with parasitically

extracted resistance and capacitance values. The CAM and

PE delays are relatively short compared to the distance decoder

delay and match position delay. The distance decoder and

match position finder operations must happen within one clock

cycle, so tDD and tMPF are the primary factors influencing

maximum clock speed. In other words, tCLKOtDDCtDD2MPFC
tMPF0tCLKO7.66 ns. A clock period of 7.66 ns leads to a

maximum clock frequency of 130.5 MHz. Taking into account

the setup times and propagation times of the registers, we have

been able to comfortably run the circuit at 100 MHz. That

allows the match processor to process data streams at 100

million characters per second, or 800 Mb/s. By scaling to a

0.1 mm process, we believe that we could improve the

operating frequency to near 500 MHz providing a data stream

operating rate of near 4 Gb/s. This data rate is fast enough to

process data streams at gigabit network rates.

The delays presented in Table 2 are for a 64 character

keyword match processor. For a practical implementation, the

size of the match processor should be much larger. In the

following discussion, we develop a delay model for a larger

keyword match processor. Because of the parallel nature of the

processing, the tCAM, tPE, and tDD delays are not dependent on

the size of the match processor. However, because the tMPF and

tMAO delays are due to propagation, these delays are dependent

on size parameters.

The MPF delay is comprised mostly of the time to propagate

the Word Match signal to the beginning of the keyword. This

delay is thus dependent on the longest keyword in the set. For

an average keyword length of five characters, the delay is
Table 2

Keyword match processor delays

Description Delay (ns)

tCAM Delay from input data to match signal 1.14

tPE Delay for flag propagation 0.85

tDD Delay to WM and distance output 3.43

tDD2MPF Delay from DD to MPF blocks 0.15

tMPF Delay to propagate match position eight

positions

4.08

tMP2MAA Delay from MP to MAA signal 1.69

tMAA2LP Delay from MAA to LP signal 1.37

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836 835
3.43 ns. If we do not allow keywords longer than eight

characters, we can guarantee a maximum delay of 4.08 ns.

Increasing the maximum length will add roughly.Two nano

seconds per character to the delay. Thus, the MPF delay is not

dependent on the size of the array but only on the length of the

longest keyword.

TheMAO logic delay has two components and they are both

dependent on the size of the array. The first is the delay from

the MP signals to the MAA signal. Our measurements show a

maximum delay of .226 ns per level of the binary tree. With

tMP2MAA equal to 1.69 ns for a 6 level tree (nZ64), we can

derive that tMP2MAAZ.226 log2nC.335. The second com-

ponent of the delay is the LP propagation back up the tree. The

delay per level of the tree is 0.228 ns. With tMAA2LP equal to

1.37 ns for a six level tree, we can derive that tMAA2LPZ
.228 log2n. We can generalize this and calculate the delay for

the entire MAO tree: tdZtMP2MAACtMAA2LPZ.454 log2nC
.335 ns.

For a 64 character match processor, the DD and MPF delays

dominate the MAO delays. However as we increase the size of

the array, MAO delay becomes more significant. At nZ64 K,

the MAO delay is approximately 7.6 ns and comparable to the

distance decoder and match position finder delays. Thus, as the

number of characters gets larger than 64 K, the MAO delay

becomes the determining factor in clock speed, but for smaller

CAMs, we can still maintain a 100 MHz clock. Though

character arrays that large are not envisioned, pipelining the

MAO stage is an obvious solution to increase the clock speed.

Likewise, the distance decoder and match position finder stages

can be pipelined as well to get a significantly faster clock

frequency.

In comparison with a pure software implementation, the

hardware implementation is significantly faster. Consider a

dictionary search application, where we wish to determine if a

particular word is in the dictionary. In the VLSI implemen-

tation, the dictionary would be stored in the CAM, and the

search word would be input serially to the keyword match

processor. For example, if we are searching for an eight

character keyword in a 32 K character dictionary, the

resolution time for a match would be nine clock cycles—

eight clock cycles for each character of the keyword plus one

extra clock cycle for the match. At a 100 MHz clock, the time

would be 80 ns.

A purely software implementation would store the

dictionary in normal RAM. Using an algorithm such as

Boyer-Moore [3], the search time would require at a worst case

roughly one comparison for each character in the dictionary.

Thus, for a 32 K character dictionary, the search would take

approximately 64 K cycles—32 K comparison cycles and 32 K

load from memory cycles (assuming that the dictionary is in

single cycle access cache). A 4 GHz processor would take

16 ms to execute those 64 K cycles. Thus, the VLSI

implementation is roughly 200 times faster than the software

implementation. In high-speed applications, the advantage of

the hardware implementation is clear. Note, that in applications

where the dictionary is very large and thus does not fit in
the CAM, software based approaches would still be required or

could be used in cooperation with a CAM-based solution.
4. Related work

Genome sequencing is a pattern matching dependent

application that is very compute-intensive and, as a result,

hardware implementations have been suggested as a remedy.

Several hardware implementations have been proposed to

accelerate the Smith-Waterman algorithm for sequence

alignment [21–23]. For the most part, these hardware

implementations use systolic arrays to attain speedup in the

Smith-Waterman algorithm. The architecture is similar to our

PE array, in that data progresses systolically through the array.

In the case of the Smith-Waterman systolic arrays, each PE is

responsible for calculating intermediate values that are

propagated through the array. Data dependencies restrict

when PEs can operate. The serial algorithm is O(mn) where

n is the size of the input string and m is the size of the pattern.

When m is very large, there is lots of parallelism available, and

thus a hardware implementation is practical. However, for

small m, as with text dictionary search, there is not enough

parallelism to extract. In our PE array, the parallelism is limited

only by the size of the CAM array since all matches are done

concurrently across multiple keywords/patterns at once.

In the area of network intrusion detection, there has been

significant FPGA work. For example, there have been

comparator-based designs that use sliding window compari-

sons and single character comparators with shift registers to

propagate matches across clock cycles [11,9]. The approach is

similar to our PE array, with the difference being that the

patterns are programmed into the FPGA logic, thus requiring

reprogramming whenever the pattern set changes. The use of

CAMs as in our design precludes the need for reprogramming.

The recent FPGA approaches, however, do support multi-

character parallelism, i.e. the ability to match multiple

characters in the input stream at once. With a CAM-based

approach as we have described, this type of parallelism will

require replication of the CAM array—a significant expense in

terms of area.

Two FPGA implementations that do stand out for not

requiring reprogramming are the KMP approach [24] and

Bloom filters [25]. The KMP approach translates the Knuth–

Morris–Platt string matching algorithm into hardware and uses

on-chip RAM to store the patterns. Bloom filters is another

approach using probabilistic methods to perform string

matching. While very fast and area-efficient, Bloom filters

unfortunately can sometimes produce false matches.

The most closely related work to our design is the work by

Motomura [14,18]. The key difference with Motomura’s

design is the ability to handle varying sized keywords without

grouping and also a priority encoder that can output multiple

keyword matches. By eliminating grouping, the resulting PE is

more compact. Our priority encoder is a novel design that can

detect multiple pattern matches more efficiently. The binary

tree structure lessens the delay impact of larger arrays.

L. Bu, J.A. Chandy / Microelectronics Journal 37 (2006) 828–836836
5. Conclusions and future directions

We have designed and fabricated a VLSI implementation of

a keyword match processor. The design extends cascaded

CAM designs to do fast keyword matching on input data

streams with arbitrarily sized keywords. A design of a priority

encoder that can handle multiple keyword matches is also

demonstrated. The current implementation allows us to process

data at 800 Mb/s. The applications of such a keyword match

processor are numerous, but the most promising area is in

network processing. We have used a modified keyword match

processor design to create a network intrusion detection system

that can process incoming networks at 800 Mb/s. Current

software based solutions can barely handle 100 Mb/s before

dropping packets. Other potential applications include direc-

tory lookups in network storage file systems and URL

matching for load balancing.

References

[1] A. Aho, M. Corasick, Efficient string matching: an aid to bibliographic

search, Communications of ACM 18 (6) (1975) 333–343.

[2] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings,

SIAM Journal on Computing 6 (2) (1977) 323–350.

[3] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Communi-

cations of ACM 20 (10) (1977) 762–772.

[4] C.J. Coit, S. Staniford, J. McAlerney, Towards faster string matching for

intrusion detection or exceeding the speed of snort, in: Proceedings of

DARPA Information Survivability Conference and Exposition II, 2001,

pp. I:367–373.

[5] M. Fisk, G. Varghese, Fast content-based packet handling for intrusion

detection, Tech. Rep. CS2001-0670, Department of Computer Science,

University of California, San Diego, 2001.

[6] K. Anagnostakis, S. Antonatos, E.P. Markatos, M. Polychronakis, E2XB:

a domain-specific string matching algorithm for intrustion detection, in:

Proceedings of IFIP International Information Security Conference, 2003,

pp. 217–228.

[7] K.E. Grosspietsch, Associative processors and memories: a survey. IEEE

Micro 12(3).

[8] B.L. Hutchings, R. Franklin, D. Carver, Assisting network intrusion

detection with reconfigurable hardware, in: Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing Machines, 2002,

pp. 111–120.

[9] Y.H. Cho, W.H. Mangione-Smith, Deep packet filter with dedicated logic

and read only memories, in: Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines, 2004, pp. 125–134.
[10] C. Clark, D. Schimmel, Scalable multi-pattern matching on high-speed

networks, in: Proceedings of the IEEE Symposium on Field-Program-

mable Custom Computing Machines, 2004.

[11] I. Sourdis, D. Pnevmatikatos, Pre-decoded CAMs for efficient and high-

speed NIDS pattern matching, in: Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines, 2004.

[12] Y. Sugawara, M. Inaba, K. Hiraki, Over 10Gbps string matching

mechanism for multi-stream packet scanning systems, in: Proceedings

of International Conference on Field Programmable Logic and

Applications, 2004.

[13] A.J. McAuley, P. Francis, Fast routing table lookup using CAMs, in:

Proceedings of IEEE INFOCOM, vol. 3, 1993, pp. 1382–1391.

[14] M. Motomura, J. Toyoura, K. Hirata, H. Ooka, H. Yamada, T. Enomoto,

A 1.2-million transistor, 33MHz, 20-b dictionary search processor (DISP)

ULSI with a 160-kb CAM, IEEE Journal of Solid-State Circuits 25 (5)

(1990) 1158–1164.

[15] R. Panigrahy, S. Sharma, Sorting and searching using ternary CAMs,

IEEE Micro 23 (1) (2003) 44–53.

[16] J.P. Wade, C.G. Sodini, A ternary content addressable search engine,

IEEE Journal of Solid-State Circuits 24 (4) (1989) 1003–1013.

[17] A. Mukhopadhyay, Hardware algorithms for string processing, IEEE

Computer (1980) 508–511.

[18] M. Motomura, H. Yamada, T. Enomoto, A 2k-word dictionary search

processor (DISP) with an approximate word search capability, IEEE

Journal of Solid-State Circuits 27 (6) (1992) 883–891.

[19] M. Hirata, H. Yamada, H. Nagai, K. Takahashi, A versatile data

string-search VLSI, IEEE Journal of Solid-State Circuits 23 (2)

(1988) 329–335.

[20] T. Moors, A. Cantoni, Cascading content addressable memories, IEEE

Micro 12 (3) (1992) 56–66.

[21] R.P. Jacobi, M. Ayala-Rincon, L.G.A. Carvalho, C.H. Llanos,

R.W. Hartenstein, Reconfigurable systems for sequence alignment and

for general dynamic programming, Genetics and Molecular Research 4

(3) (2005) 543–552.

[22] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, A.

Dickerman, A run-time reconfigurable system for gene-sequence

searching, in: Proceedings of the International VLSI Design Conference,

2003, pp. 561–566.

[23] C.W. Yu, K.H. Kwong, K.H. Lee, P.H.W. Leong, A smith-waterman

systolic cell, in: Proceedings of International Conference on Field

Programmable Logic and Applications, 2003.

[24] Z.K. Baker, V.K. Prasanna, A methodology for synthesis of efficient

intrusion detection systems on FPGAs, in: Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing Machines, 2004,

pp. 135–144.

[25] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, J. Lockwood,

Implementation of a deep packet inspection circuit using parallel

bloom filters in reconfigurable hardware, in: Proceedings of HOTi03,

2003.

	A CAM-based keyword match processor architecture
	Introduction
	Keyword match processor architecture
	Control circuit
	CAM array
	PE array
	Distance decoder
	Match position finder
	Matched address output (MAO) logic
	Keyword match processor example
	Architecture extensions

	Keyword match processor VLSI implementation
	Related work
	Conclusions and future directions
	References

